Magnetic-Inductive Flow Velocity Sensor

Device Description
Table of contents

1 IDENTIFICATION .. 3

1.1 Manufacturer/supplier ... 3

1.2 Product type .. 3

1.3 Product name ... 3

1.4 Issue date ... 3

1.5 Version no. .. 3

2 APPLICATIONS ... 3

3 OPERATIONAL MODE AND SYSTEM DESIGN .. 3

3.1 Operational mode .. 3

3.2 System design ... 3

3.2.1 Transmitter mounted on the sensor ... 4

3.2.2 Transmitter installed separately ... 4

3.2.3 PIT-520 .. 4

3.2.4 PIT-580 .. 4

3.2.5 PIT-571 .. 4

3.2.6 PIT-573 .. 4

4 CHARACTERISTIC VALUES .. 4

4.1 Measuring accuracy .. 4

4.2 Conductivity of the medium .. 4

4.3 Influence of ambient temperature .. 4

4.4 Influence of medium temperature .. 4

5 CONDITIONS OF USE ... 4

5.1 Installation conditions ... 4

5.1.1 Depth of immersion of the PIT-*** in the pipe ... 5

5.1.2 Dismounting/reinstalling the device under process pressure ... 5

5.1.3 Grounding... 5

5.2 Use in hazardous areas ... 5

5.3 Ambient conditions .. 5

5.3.1 Ambient temperature ranges ... 5

5.3.2 Storage temperature ... 5

5.3.3 Climatic category... 5

5.3.4 Degree of protection ... 5

5.3.5 Shock resistance/vibration resistance ... 5

5.4 Medium temperature and pressure ... 5

5.4.1 Transmitter is mounted on the sensor ... 5

5.4.2 Transmitter is mounted separately ... 5

6 DIMENSIONS/WEIGHT ... 6

6.1 PIT-5** dimension drawing for separate transmitter .. 6

6.2 PIT-5** dimension drawing with mounted transmitter in SG1 housing 7

7 AUXILIARY POWER/ELECTRICAL CONNECTION .. 8

8 CE MARK .. 8

9 STANDARDS AND DIRECTIVES, CERTIFICATES AND APPROVALS 8

10 OPTIONS ... 8

10.1 Dismounting/reinstalling the device under process pressure .. 8

10.2 PIT with IP 68 degree of protection ... 9

10.2.1 Wiring diagram for IP 68 hazardous area version ... 9

10.2.2 Wiring diagram for IP 68 standard version ... 9

11 EC TYPE EXAMINATION CERTIFICATE .. 10

12 SALES REPRESENTATIVES ... 12

13 NOTES .. 12
1 Identification

1.1 Manufacturer/supplier
Heinrichs Messtechnik GmbH
Robert-Perthel-Str. 9 · D-50739 Köln
Phone: +49 (221) 49708 - 0
Fax: +49 (221) 49708 - 92
Internet: http://www.heinrichs-mt.com/
E-mail: mailto:info@heinrichs-mt.com

1.2 Product type
Magnetic-inductive flow sensor based upon Faraday's law of induction

1.3 Product name
PIT-520, PIT-580, PIT-571 and PIT-573

1.4 Issue date
23/02/2005

1.5 Version no.
3.0
File: PIT_GB_03_eng.doc

2 Applications

The magnetic-inductive PIT flow velocity sensor is used to measure or monitor the volume flow of liquids with and without solids concentration, slurries, pastes and other electrically conductive media while minimizing pressure drops. The conductivity of the medium must be at least 20 µS/cm.

Pressure, temperature, density and viscosity do not affect the volume measurements. Smaller portions of solid particles and small gas pockets are also measured as part of the volume flow. A larger number of solid particles or gas pockets will lead to failures. Special electrodes are available for media that tend to form greasy films or crusts.

3 Operational mode and system design

3.1 Operational mode

It was back in 1832 that Faraday suggested utilizing the principle of electrodynamic induction for measuring flow velocities. His experiments in the Thames, though unsuccessful due to superimposed polarization effects, are nonetheless regarded as the first ones in the field of magnetic-inductive flow measurement.

According to Faraday's law of electromagnetic induction, an electrical field E is produced in a conductive liquid moving through a magnetic field B at a velocity v in accordance with the vector product $E = [v \times B]$. A liquid at flow velocity v and a flow rate Q flows through a meter tube (4), producing a measuring-circuit voltage U_m at the two electrodes (E1 and E2) at right angles to the direction of flow and the magnetic field B generated by the field coils (3). The size of this measuring-circuit voltage is proportional to the mean flow velocity and thus the volume flow rate.

3.2 System design

The magnetic-inductive PIT-*** flow measurement system consists of a sensor, which picks up an induced measuring signal from the medium flowing through the pipe, and a transmitter, which transforms this signal in standardized output signals (4-20 mA or pulses).

The PIT-*** sensor can be operated with all transmitters for magnetic-inductive flowmeters manufactured by Heinrichs Messtechnik. The sensor is installed in the pipe while the transmitter is mounted directly on the sensor or separately on the outside, depending on the equipment design.
3.2.1 Transmitter mounted on the sensor
This type of construction ensures easy and trouble-free installation.

3.2.2 Transmitter installed separately
Heinrichs Messtechnik recommends this type of installation when there is little space or the medium temperatures are high. The sensor and the transmitter are connected by a field coil and an electrode cable. The electrode cable must be shielded and protected against disturbing interferences.

3.2.3 PIT-520
Socket of sensor housing and flange are made of stainless steel.

3.2.4 PIT-580
Socket of sensor housing and flange are made of Hastelloy.

3.2.5 PIT-571
Socket of sensor housing and flange are made of stainless steel. The wetted parts of the housing are PFA-coated.

3.2.6 PIT-573
Socket of sensor housing and flange are made of stainless steel. The wetted parts of the housing are PFDF-coated.

4 Characteristic values

4.1 Measuring accuracy
\[\pm 1.5 \% \text{ of measured value plus } \pm 0.5 \% \text{ of URV} \]

4.2 Conductivity of the medium
\[\geq 20 \mu \text{S/cm} \]

4.3 Influence of ambient temperature
See transmitter

4.4 Influence of medium temperature
None

5 Conditions of use

5.1 Installation conditions
Disturbing elements (e.g. shut-off and control devices) are to be arranged downstream from the sensor. If this is not possible, flow straighteners must be installed so that no vortexes can reach into the pipe section of the sensor. The mounting location in the pipe system should be selected so that the sensor is continually filled with the medium. This requirement can be met by using drains and non-return valves.
In order to stay within the indicated error limits, the installation must be performed according to EN 29104 “Measurement of Fluid Flow in Closed Conduits – Methods of Evaluating the Performance of Magnetic-Inductive Flowmeters.” Based on this standard, the minimum straight run of pipe ahead of the inlet must be 10 pipe diameters (> 10 x DN) and 5 pipe diameters following the outlet (> 5 x DN) [DN = nominal diameter of pipe].

In order to prevent serious measuring errors when the pipe is partially filled or when there are gas pockets or sediment deposits, the mounting position described above should be chosen.

The limit values for the product and ambient temperature must be met at the mounting location. Corrosive atmospheres must be avoided. Please also take into account the space requirement for a possible removal of the device.

5.1.1 Depth of immersion of the PIT-*** in the pipe
In order to suppress the influence of the flow profile as much as possible, the depth of immersion of the measuring head in the pipe must be 15 % of the inside diameter of the pipe. The socket weld fitting must not cover the top of the measuring head and must be shortened if necessary.

5.1.2 Dismounting/reinstalling the device under process pressure
For easily dismounting and reinstalling the device under process pressure, a version with a special mechanism is available. When using this mechanism, the measuring head must not be damaged by closing the valve.

For details, see the Additional Operating Instructions for Dismounting and Reinstalling the Device under Process Pressure (see also Section 14 "Options").

5.1.3 Grounding
For safety reasons and to ensure faultless operation of the magnetic-inductive flowmeter, grounding the flow sensor is important. In accordance with VDE 0100, Part 540, the ground connections must be at protective conductor potential. For the hazardous area version, they must be equipotentially bonded. For metrological reasons, the potential should be identical to the potential of the medium.

When using insulated and lined pipes or plastic pipes, the metrological grounding of the medium for PIT-520/580 is carried out via the wetted part of the measuring head.

All wetted parts of PIT-571 are coated with PFA (PIT-573 with PVDF). It is therefore not possible to ground the medium via the housing parts. In this case, a special version of PIT-571/PIT-573 equipped with a grounding electrode is necessary.

5.2 Use in hazardous areas
The PIT-520 and PIT-571 flowmeters can also be used in Zone 1 hazardous areas. Only devices with a corresponding mark on their type plate may be operated in these areas. The special conditions with regard to the relationship between the thermal data and the medium temperature, ambient temperature and the temperature class in accordance with the EC Type Examination Certificate BVS 03 ATEX 150 X must be observed.

When installing and operating the device in hazardous areas, the applicable national rules must be followed.

5.3 Ambient conditions

5.3.1 Ambient temperature ranges
-40°C to +60°C

For the hazardous area version, take note of the maximum ambient temperatures depending on the temperature class as specified in the Type Examination Certificate.

5.3.2 Storage temperature
The storage temperatures are identical to the ambient temperature ranges.

5.3.3 Climatic category
- In accordance with IEC 654-1
- Not weather-protected Class D locations exposed directly to open-air climate

5.3.4 Degree of protection
- Standard version: IP 65
- Special version: IP 68
- Weather-protected and/or unheated locations, class C

5.3.5 Shock resistance/vibration resistance
The meter should be protected from extreme shocks and vibrations, which could cause damage.

5.4 Medium temperature and pressure

5.4.1 Transmitter is mounted on the sensor

<table>
<thead>
<tr>
<th>Version</th>
<th>Medium temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-520/580 standard</td>
<td>-20°C to 80°C</td>
<td>16 bar</td>
</tr>
<tr>
<td>PIT-571 standard</td>
<td>-20°C to 80°C</td>
<td>40 bar</td>
</tr>
<tr>
<td>PIT-573 standard</td>
<td>-20°C to 80°C</td>
<td>40 bar</td>
</tr>
</tbody>
</table>

5.4.2 Transmitter is mounted separately

<table>
<thead>
<tr>
<th>Version</th>
<th>Medium temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-520/580 standard</td>
<td>-40°C to 100°C</td>
<td>16 bar</td>
</tr>
<tr>
<td>PIT-571 standard</td>
<td>-40°C to 140°C</td>
<td>40 bar</td>
</tr>
<tr>
<td>PIT-573 standard</td>
<td>-20°C to 80°C</td>
<td>40 bar</td>
</tr>
</tbody>
</table>
6 Dimensions/weight

6.1 PIT-5** dimension drawing for separate transmitter

<table>
<thead>
<tr>
<th>Version</th>
<th>DN</th>
<th>Sensor lining</th>
<th>Length of sensor T</th>
<th>Sensor-Ø</th>
<th>Length of weld fitting L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-571</td>
<td>150 - 600</td>
<td>PFA</td>
<td>163</td>
<td>62</td>
<td>145</td>
</tr>
<tr>
<td>PIT-573</td>
<td>150 - 600</td>
<td>PVDF</td>
<td>163</td>
<td>62</td>
<td>145</td>
</tr>
<tr>
<td>PIT-520</td>
<td>150 - 600</td>
<td>1.4571</td>
<td>163</td>
<td>60,3</td>
<td>145</td>
</tr>
<tr>
<td>PIT-520</td>
<td>700 - 1200</td>
<td>1.4571</td>
<td>263</td>
<td>60,3</td>
<td>170</td>
</tr>
<tr>
<td>PIT-520</td>
<td>1400 - 2000</td>
<td>1.4571</td>
<td>363</td>
<td>60,3</td>
<td>170</td>
</tr>
</tbody>
</table>

Weight: 3.6 kg
6.2 PIT-5** dimension drawing with mounted transmitter in SG1 housing

<table>
<thead>
<tr>
<th>Version</th>
<th>DN</th>
<th>Sensor lining</th>
<th>Length of sensor T</th>
<th>Sensor-Ø</th>
<th>Length of weld fitting L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-571</td>
<td>150 - 600</td>
<td>PFA</td>
<td>163</td>
<td>62</td>
<td>145</td>
</tr>
<tr>
<td>PIT-573</td>
<td>150 - 600</td>
<td>PVDF</td>
<td>163</td>
<td>62</td>
<td>145</td>
</tr>
<tr>
<td>PIT-520</td>
<td>150 - 600</td>
<td>1.4571</td>
<td>163</td>
<td>Ø</td>
<td>145</td>
</tr>
<tr>
<td>PIT-520</td>
<td>700 - 1200</td>
<td>1.4571</td>
<td>263</td>
<td>60,3</td>
<td>170</td>
</tr>
<tr>
<td>PIT-520</td>
<td>1400 - 2000</td>
<td>1.4571</td>
<td>363</td>
<td>60,3</td>
<td>170</td>
</tr>
</tbody>
</table>

Weight: 7.6 kg
7 Auxiliary power/electrical connection
See type plate or Operating Instructions of the corresponding transmitter

8 CE Mark

Heinrichs Messtechnik confirms compliance with the directives by attaching the CE mark to the device.

9 Standards and directives, certificates and approvals
Certified to DIN-EN 9001
Production in accordance with AD guidelines and HPO approval (TRB200/TRD201)
TÜV approval for welding requirements in accordance with DIN-EN 729-2

Directive 94/9/EC (Equipment and Protective Systems for Use in Potentially Explosive Atmospheres)
EN 50014:1997+A1-A2 General requirements
EN 50019:2000 Increased safety "e"
EN 50020:1994 Intrinsic safety "i"

EN 61000-6-2:1999 Immunity industrial environment
EN 50 081-1 Emitted interference residential environment
EN 55011:1998+A1:1999 Group 1, Class B

AD guidelines

NAMUR recommendation NE 21
EN 60529 – Degrees of protection through housing (IP code)
EN 61010 – Safety requirements for electrical measuring, control and laboratory devices

10 Options

10.1 Dismounting/reinstalling the device under process pressure
In some cases it might be necessary to dismount and reinstall the PIT for cleaning when the pipe is under process pressure. A special mechanism can be used for this purpose.

When using this mechanism, it is important to ensure that the measuring head will not be damaged by closing the valve. For a detailed description of this process, see the Additional Operating Instructions for Dismounting/Reinstalling the Device under Process Pressure (Section 5.1.2).
10.2 PIT with IP 68 degree of protection

A special version of PIT is available with the IP 68 degree of protection. This version is equipped with a special terminal box, special cable glands and a special cable. The length of the cable must be specified when placing the order. The terminal box does not need to be opened during the installation. If this should be necessary, the cover must be remounted carefully. This is the only way to ensure the IP 68 degree of protection.

The maximum depth of immersion is 5 m.

Due to the separate wiring arrangement of intrinsically safe and not intrinsically safe circuits for hazardous area applications, two cables are available for this version.

10.2.1 Wiring diagram for IP 68 hazardous area version

10.2.2 Wiring diagram for IP 68 standard version
Translation

EC-Type Examination Certificate

(1) Directive 94/9/EC - Equipment and protective systems intended for use in potentially explosive atmospheres

(2) BVS 03 ATEX E 150 X

(3) Equipment: Flow Sensor Type PIT-520, Type PIT-571 and Type PIT-580

(4) Manufacturer: Heinrichs Messtechnik GmbH

(5) Address: D 50739 Köln

(6) The design and construction of this equipment and any acceptable variation thereon are specified in the schedule to this type examination certificate.

(7) The certification body of Deutsche Montan Technologie GmbH, notified body no. 0158 in accordance with Article 9 of the Directive 94/9/EC of the European Parliament and the Council of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive. The examination and test results are recorded in the test and assessment report BVS PP 03.2071.10.

(8) The Essential Health and Safety Requirements are assured by compliance with:

EN 50014:1997+A1-A2 General requirements
EN 50019:2000 Increased safety
EN 50020:1994 Intrinsically safe

(9) If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate.

(10) This EC-Type Examination Certificate relates only to the design, examination and tests of the specified equipment in accordance to Directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate

(11) The marking of the equipment shall include the following:

II 2G Ex e [ia] IIC T3-T6

Deutsche Montan Technologie GmbH
From, dated 15. May 2003

Signed: Jockers
Signed: Elcknoff

DMT-Certification body
Head of special services unit

Appendix to

EC-Type Examination Certificate

BVS 03 ATEX E 150 X

(13) 15.1. Subject and type
Flow Sensor Type PIT-520, Type PIT-571 and Type PIT-580

(14) 15.2. Description
The flow-meter, using the principle of magnetic induction, serves for the flow measurement of conductive fluids. The mounting flange of the sensor is integrally attached to the pipe containing the fluid.

For power supply and for signal evaluation, the sensor is used in conjunction with a signal transducer type UMF (DMT 99 ATEX E 107 X) which is directly mounted to the sensor (compact version).

Alternatively, the sensor is provided with a connection box; the associated signal transducer, separately certified, is connected to the sensor by means of a cable (separated version).

15.3 Parameters

15.3.1 Electrical parameters

15.3.1.1 Field coil circuit

Rated voltage: up to 60 V
Rated current: 260 mA
Maximum current: 250 mA
Pulse frequency: 25 Hz

15.3.1.2 Electrode circuit (separated version), intrinsically safe category I

Voltage U1: 24 V
Current I1: 160 mA
Capacitance C: negligible
Inductance L1: negligible

15.3.1.3 Electrode circuit (compact version), intrinsically safe

As defined in the relevant EC-Type Examination Certificate for the signal transducer

15.3.1.4 Transducer circuits

As defined in the relevant EC-Type Examination Certificate
15.3.2 Thermal data

<table>
<thead>
<tr>
<th>Type designation and version</th>
<th>Maximum fluid temperature (°C)</th>
<th>Ambient temperature (°C)</th>
<th>Temperature class</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT-520/PIT-580 separated version</td>
<td>60</td>
<td>-40 up to +50</td>
<td>T6</td>
</tr>
<tr>
<td>PIT-520/PIT-580 separated version</td>
<td>80</td>
<td>-40 up to +60</td>
<td>T5</td>
</tr>
<tr>
<td>PIT-520/PIT-580 compact version</td>
<td>60</td>
<td>-20 up to +50</td>
<td>T6</td>
</tr>
<tr>
<td>PIT-520/PIT-580 compact version</td>
<td>80</td>
<td>-20 up to +55</td>
<td>T5</td>
</tr>
<tr>
<td>PIT-571 separated version</td>
<td>60</td>
<td>-40 up to +45</td>
<td>T6</td>
</tr>
<tr>
<td>PIT-571 separated version</td>
<td>60</td>
<td>-40 up to +60</td>
<td>T5</td>
</tr>
<tr>
<td>PIT-571 separated version</td>
<td>100</td>
<td>-40 up to +60</td>
<td>T4</td>
</tr>
<tr>
<td>PIT-571 separated version</td>
<td>130</td>
<td>-40 up to +60</td>
<td>T3</td>
</tr>
<tr>
<td>PIT-571 compact version</td>
<td>60</td>
<td>-20 up to +45</td>
<td>T6</td>
</tr>
<tr>
<td>PIT-571 compact version</td>
<td>60</td>
<td>-20 up to +55</td>
<td>T5</td>
</tr>
<tr>
<td>PIT-571 compact version</td>
<td>100</td>
<td>-20 up to +50</td>
<td>T4</td>
</tr>
<tr>
<td>PIT-571 compact version</td>
<td>130</td>
<td>-20 up to +50</td>
<td>T3</td>
</tr>
</tbody>
</table>

Thermal data of the separate transducers in accordance with the EC-Type Examination Certificate of the transducers.

15.3.3 Permissible fluid pressure

| Sensor type PIT-520 and type PIT-580 | 16 bar |
| Sensor type PIT-571 | 40 bar |

(16) Test and assessment report
BVS PP 03.2097 EG as of 16.05.2003

(17) Special conditions for safe use
17.1 It shall be ensured that there are no detrimental effects to the materials of the sensor caused by the fluids.
17.2 The flow sensor is designed for use in an ambient temperature range of -40°C up to +60°C.
 It shall be ensured that the data as defined under 15.3.2 for the ambient temperature, the fluid temperature and the temperature class are met.
17.3 For sensors of the separate version which are used at an ambient temperature of less than -20 °C suitable cables and cable entry devices certified for this condition shall be used.
17.4 The special conditions for safe operation as defined in the relevant EC-Type Examination Certificate for the signal transducers shall be observed.
17.5 If the mass flow transmitter is connected by conduit entries they must be certified for this purpose and the associated stopping boxes must be mounted immediately to the enclosure.
17.6 The control device type BE is designed for use in an ambient temperature range of -20°C up to +70°C.
12 Sales representatives
See Internet: http://www.heinrichs-mt.com/

13 Notes